J. Am. Chem. So2000,122, 60576066 6057

An Interpretation of Small-lon Effects on the Electrostatics of zhe
Repressor DNA Complex

Nancy L. Marky and Gerald S. Manning*

Contribution from the Department of Chemistry, Rutgers:l@rsity, 610 Taylor Road,
Piscataway, New Jersey 08854-8087

Receied December 6, 1999. Reed Manuscript Receed April 21, 2000

Abstract: Monte Carlo simulations of the interactions of Nand CI ions with A repressor protein and its

DNA operator site have revealed an interesting effect [Jayaram, B.; DiCapua, F. M.; Beveridge). Bunh..

Chem. Socl1991], 113 5211-5215]. When the protein is close to its binding site on DNA, the presence of the
small ions strengthens the electrostatic net attractive force between the formally charged protein residues and
the phosphate groups on DNA. The effect has been interpreted as a manifestation of the release of counterions
condensed on DNA. We show that although counterions are indeed released, the enhancement of the attractive
force at short distances has a different origin. There is a direct attraction between DNA phosphates and positively
charged protein residues, and a direct repulsion between DNA phosphates and negatively charged protein
residues. Close to the DNA, the net direct force is attractive. By weakening the direct repulsion between DNA
phosphates and the negatively charged glutamate and aspartate residues on the protein, the presence of small
ions increases the net attraction. A complete understanding of pr@&A electrostatics thus involves
consideration of the interaction of DNA phosphates with anionic as well as cationic protein residues. As a side
result of our calculations, we estimate the effect of small ions on the binding free energy of the repressor
operator complex (from the isolated species) as unfavorable at abedt4kcal/mol.

1. Introduction defined, is expected to be stronger (more negative) in the
absence of small ions than in their presence. In fact, this
expectation is verified (see below). An interesting and coun-
terintuitive influence of the small ions was nonetheless revealed
by the simulation.

Usually, a binding free energy is referred to infinite distance;
it measures the work required to move the binding molecules
from a large separation distance to the docking, or bound,
position. But suppose the binding free energy is redefined to
mean the work required to move theepressor from a distance
relatively close to the DNA into its docking position (which is
still closer). This definition could actually be of more relevance
in a biological context than the conventional definition. Jayaram
et al. found that the presence of Nand CI ions acts to make

Our intuitive expectations of the effect of small ions on
electrostatic interactions have largely been molded by the
screening theory of Debye and ekel. The distance dependence
of the attractive potential between aNeation and a Cl anion
in NaCl solution has the limiting form-exp(—«r)/r, where the
effect of the other Na and CI ions is incorporated into the
screening parametet proportional to the square root of NaCl
concentration. If we subtract the direct Coulomb potentiir
from the screened potential to isolate the effect of salt, we get
the function [1 — exp(—«r)]/r, which is positive for all
separation distancas Thus, the effect of the other Naand
CI~ ions on the direct attractive interaction between a given
Na" and CI" pair is to add an unfavorable free energy t0 it, o pinding free energy, thus redefined, more negative; the
effectively de(?,reasmg the attract_|on. redefined binding free energy is stronger in the presence of the

Jayaram, DiCapua, and Beveriddmve performed a Monte  gmall jons than in their absence. The effect is counterintuitive,
Carlo (MC) free energy simulation of a proteidDNA complex  pecause screening theory predicts that salt weakens the binding
that isolates the effect of small ions on the interaction. The  free energy of an oppositely charged ion pair, regardiess of the
repressor is a transcription regulatory protein that binds to a starting distance between the ions.
specific promotor sequence of DNA base pairs, the operator  The authors interpreted their result as reflecting the phenom-
site. There are many positively charged (lysine, arginine) and enon of counterion release. When a charged ligand penetrates
negatively charged (glutamate, aspartate) residues on the proteinge |ayer of counterions condensed on an oppositely charged

of the complex, and the salt concentration dependence of theyij| pe released into bulk solution, providing an entropic

association constant for the complex is about the same as thatontribution to the driving force for ligatiod? In the absence
for the binding of a divalent or trivalent cation (positive charge) of small ions, there would be no condensed layer of counterions,

to the polyanionic field of DNA. A reasonable expectation is anq this source of favorable entropy (negative free energy)
that the direct electrostatic attraction between protein and DNA \ould be absent. Counterion release strengthens the direct

would be weakened by the screening effect of the blad CI attraction between oppositely charged ligand and polyion, and
ions present in the system. The binding free energy, as usuallyif it is assumed to be the dominating influence of small ions at
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near distances, then the negative free energy observed in the

simulation can be understood. The interpretation of Jayaram et
al. is all the more reasonable, since, as they point out, the
maximum enhancement of the binding (from close distances)
is observed to occur when the protein is at a distance corre-
sponding to the width of the condensed layer of counterions,
the latter having been clearly demarcated by an inflection point
in the counterion distributions measured in earlier simulatféns.
The existence of a layer of counterions condensed in the strict
sense of “charge renormalization” has been strikingly confirmed
by a combination of small-angle X-ray and small-angle neutron
scattering The current direction of our own research into
polyelectrolye behavidr78 puts us in a good position to
calculate the simulated small-ion effect by analytical theory,
and we thought it would be interesting to see if we could validate
the reasonable but essentially speculative interpretation of the
simulation as a reflection of counterion release.

2. The JDB Salt Effect Function

2.1. Definition. In the Monte Carlo simulation of Jayaram
et al.! explicit Na™ and CI ions are present in addition to the
repressor protein and the DNA operator site. The simulated
aqueous solvent is represented by a continuum dielectric
coefficient provided with a distance dependence for greater
realism at close distances. The DNA has negatively charged
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Figure 1. Schematic plot illustrating the results of the JDB simulation.

namely,w(r) — u(r), is the effect of small ions on the work
required to bring the pair from infinite separatiorrté\s noted,
we change the reference state by lettimagpe some cutoff
distance of closest approach. Then the small-ion effect on the
overall work w(a) — w(r) required to bring A and B from
separation distanceto a is given by the formula
Weor) = [w(@) — u(@)] — [w(r) — u(r)] 1)
The subscript “s” in the functiomsy(r) representing the small-
ion effect reminds us of “salt”, a term intended to apply to all

phosphate groups P, and the protein has both positively chargedsmall ions in the systempclusive of the DNA and protein
lysine and arginine residues and negatively charged glutamatecounterionsas well as of any added NaCl; the subscript O refers
and aspartate residues, generically symbolized as R. The inputo the choice of reference state (which, if not zero, is at least

in the simulation is a set of direct Coulomb interactiopgwith

an r~12 repulsive core) between pairs of charggg. All
interactions involving small ions are included, i, Na, Up—ci,
UR-Na» Ur—cl, UNa—Nas Uci—Na, @ndugi—ci. But the direct protein

DNA interactionsup_g are omitted (as well as the irrelevant
PP and RR interactions). Thus, the authors simulate the effect
of small ions on the represseoperator energetics in isolation
from the direct proteirr DNA interaction.

A computation is carried out for a fixed distancéetween
protein and DNA, mutually oriented as in the actual bound
complex, and results for a family of computations, each
corresponding to a different value gfare reported. A natural
reference state for the simulation is the complex itself, the
structure of which is available from crystallographic data. Thus,

the distance of closest approach of A and B). We will refer to
the energy functionvs((r) as the JDB salt effect function, after
the authors of the motivating simulatién.

To develop insight into the JDB function as defined in eq 1,
we look first at the case of infinite. For well-behaved
potentials, bothw(e) and u(w) vanish, andwg(e) reduces to
w(a) — u(a), that is, the effect of small ions on the binding free
energy as conventionally defined (the work involved in moving
the binding particles from infinity to their bound state). Both
the JDB simulation and our calculated results provide positive
values forws(r) whenr is large, in accord with the expectation
that the presence of small ions weakens the attractive free energy
of binding from distant separation. Next, we note that the
functionw(r) — u(r), which gives the effect of small ions on

the reference state is not the conventional one at large separathe conventional potential at may be obtained by flipping the

tions, and the value of the free energy reported for distance
then represents the contribution of small ions to the work
required to bring the protein from distanageto its final
“docking” position. In our theoretical free energy, which we
wish to compare to the simulated free energy, we will also use
the docked position as reference.

Let w(r) be the usual potential of mean force for some pair
of charged particles A and B that we wish to study. Its reference
state is at infinityw(e) = 0, so thatw(r) is the work required
to bring A and B from infinite separation to separation distance
r in the presence of small ions. Letr) be the direct potential
for this pair (in the absence of small ions). If the direct potential
is subtracted out of the overall potential, then what is left,

(4) Jayaram, B.; Swaminathan, S.; Beveridge, D. L.; Sharp, K.; Honig,
B. Macromoleculedl99Q 23, 3156-3165.

(5) Young, M. A.; Jayaram, B.; Beveridge, D. I. Am. Chem. Soc.
1997 119 59-69.

(6) Essafi, W.; Lafuma, F.; Williams, C. Eeur. Phys. J. B1999 9,
261-266.

(7) Manning, G. SBer. Bunsen-Ges. Phys. Chetf96 100, 909-922.

(8) Manning, G. SPhysica A1996 231, 236-253.

JDB function about the horizontal axis (i.e., changing its sign)
with a vertical shift to the value 0 &. Thenw(r) — u(r) can

be seen to be positive for allin the JDB simulation and in all
cases studied in this paper, whatever the appearance of the JDB
function. Thus, the presence of small ions always weakens the
attractive potential at every distance relative to infinite separa-
tion. Finally, at the cutoff = a, eq 1 reportsvso(@) = O as the
trivial consequence of the choice of reference state in the
definition of the JDB energy as the distance corresponding to
the bound state.

Attention is now directed to Figure 1, where we give a
schematic drawing of the result of the JDB simulation. In a
range of close distancesthe JDB functionws(r) is negative.
This means that the small ions in the system act to strengthen
the attractive free energy of binding, redefined to mean the work
required to bind the protein starting from distarceéAnother
way to interpret Figure 1 is to consider the negative slope of
wso(r), which extends fromr = 0 to the value of where the
function has its minimum. If we differentiate both sides of eq
1 with respect ta, we will see that a negative value for the
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Figure 2. JDB functionwsy(r) in units of RT for a pair of oppositely
charged univalent point ions in Debyeliickel theory. Solid curve,
0.1 M salt; dotted curve, 0.2 M salt.

Figure 3. JDB function (heavy curve, DebyéHickel theory) in units

of RT for a bipolar ion of lengt 4 A approaching a univalent point
ion, the oppositely charged end of the bipolar ion coming head-first at
distancer from the point ion. The light curve for an approaching pair
slope ofwsy(r) means that the force between protein and DNA  of point ions is included for comparison and is taken from Figure 1.
in the presence of small ions is less than in their absence. ForThe salt concentration for both curves is 0.1 M.

an attractive interaction, the force is a negative number, so “less ] )

than” in this context means a negative value of greater We restate the meaning w&d(r) in the context of the present
magnitude. The presence of small ions makes the attractive forceexample. The ions Aand B", conceptualized as structureless
larger in this range of distances. From either standpanergy points, are brought from distancéo zero distance in an aqueous
or force—the physical significance of the negative region of the NaCl solution. A certain amount of negative work is done in
JDB function shown in Figure 1 runs counter to expectation this process (indeed, the work is negatively infinite). The JDB
from simple screening of an attracting pair of oppositely charged functionws((r) gives the effect of the ion atmospheres on this

ions (see Figure 2 with accompanying analysis below).
2.2. The JDB Function in Debye-Huckel Theory. In this

section we try to deepen our insight into the JDB salt effect

function by deriving DebyeHickel limiting laws for several

work in the framework of DebyeHuckel limiting law theory.

The contribution of the ion atmospheres is not infinite.
We show in Figure 2 plots ofvso(r) for two different salt

concentrations according to eq 6. Note ta{r) is everywhere

pertinent examples. Let us start with the interaction between a Positive. The effect of the ion atmospheres is to make the overall

pair of oppositely charged univalent iong And B~ immersed

negative work less negative; the presence of salt acts to diminish

in an aqueous NaCl solution. We measure potentials in units of the direct attractive force between the” And B" charges.

ksT (Boltzmann constant times Kelvin temperature). The
potentials contain the fact@?D, whereq is the unit charge
andD the dielectric constant of bulk water, and it is convenient
to use the Bjerrum length, given in esu-cgs units, by

A (cm) = g?/DkgT 2)
about equal to 7.1 A in water at room temperature. The Debye
Huckel limiting law expressing the potential of mean force for
ions A* and B separated by distancéds a screened Coulomb
potential,

w(r) = —(A/r) exp(«r) 3)
wherex is the inverse Debye length of the NaCl solution,
i (cm?) = 8L, /1000, 4)

whereLay is Avogadro’s number anclac is the salt concentra-
tion in molarity units. The value of &/is about equal to 30.5
A in aqueous 0.01 M NaCl solution. The direct Coulomb
potential for A" and B is

u(r) = —Aalr (5)

The potentials may be evaluated botlr and atr = a and the

Indeed, Figure 2 is an effective way to illustrate Deby#ickel
screening. The second thing to notice is that the screening is
greater for the higher salt concentration.

As a second example, we continue to let the charged entity

B be a univalent negative ion B which now we might want
to think of as an isolated phosphate group on DNA. For species
A we choose an amino acid, represented as a bipolar ion with
a unit positive charge at one end and a unit negative charge on
the other end, separated by a rigid spadinthe bipolar ion A

is allowed to approach Bradially with its positive end coming
first; in other words, the distance between the positive end and
B~ isr, and the distance between the negative end anis B

+ I. The potentialsv andu of eqgs 3 and 5 may be applied to
each end of the bipolar ion (with a sign change for the potential
between B and the negative end of the bipolar ion), and the
result for the JDB salt effect function from eq 1 is

— KT —kl _ —KT\
e tur—1, e (r+l-le®)—r

r I(r+1)

W r) = A (1)

In this equation we have again taken the limit of zero cutoff
distance, savso(r) gives the effect of salt on the work required
to bring the point positive charge at one end of A from distance
r to the location of the point charge Bthe negative end of A

trailing along radially. Note that there is no need to consider
the intramolecular interaction between the two ends of the

corresponding expressions substituted into eq 1. After this step,bipolar ion, because it would cancel in the difference between

the simplifying limit a — 0 may be implemented without
encountering a singularity. The result is

e“"+ur—1

W) = A r

(6)

the initial and final states.
In Figure 3 we show one of the curves from Figure 2 for the
approach of a counterion™Ato B~ together with a plot of eq
7 for the approach of an amino acid A to Bh aqueous NaCl
of the same concentration. The salt effect for the latter situation
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Figure 4. JDB function in units of 2RT for a univalent counterion r A
approaching a line charge in Deby#lickel theory. In these units, the ~ Figure 5. JDB functionws((r) (heavy curve, DebyeHiickel theory)
graph is the same for any line charge densitySolid curve, 0.1 M in units of 25 RT for a bipolar ion of lendt 4 A approaching a line
salt; dotted curve, 0.2 M salt. charge, the oppositely charged end of the bipolar ion coming head-
first at distance from the line. The light curve is the potential of mean
is qualitatively the same as that for the former. Since the positive forcew(r) for this case with the same units (the descent is monotonic
end of the bipolar ion is closer to'Bhan the negative end, the ~even to the left of the portion of the curve shown). The salt
behavior of A is qualitatively that of a cation. However, the concentration for both curves is 0.1 M.
negative end of A does interact repulsively with,Bso the
overall electrostatic interaction of the net zero charge of A with Figure 5 presents a graphwi((r)/2£ and reveals a feature that
B~ is substantially less than that for an unmitigated cation. ~ we did not expect: the curve descends with increasifigo
For our next example, let species A be a point counterion negative values before hitting a minimum and rising into a

A* and B an infinite negative line charge of unsigned reduced Positive region of ordinary screening. Note from eq 12 that the
charge density: charge densitf merely plays the role of a scaling factor, as it

must in linear Debye Hickel theory. The minimum is therefore
E=1b (8) present even at low charge densities where Detlbiigckel
) ) ) ) theory is accurate. As part of Figure 5 we have shown a plot of
wherein a line segment of lengthcontains a unit amount of  pe ordinary potential of mean force for this case)/2& =
charge. Recalling thdtis about 1.7 A for the solution structure —Ko(kr) + Ko[x(r + 1)]. This plot exhibits an apparently
of DNA, we see that for DNA is about 4.2, which is quitt  ordinary screened Coulomb attraction. The bipolar ion ap-
large. The use of DebyeHtickel theory would be accurate only  hroaching the anionic line charge with cationic end head
for sufficiently small values o€, but in this section we are not  f5remost looks like a cation when analyzed with the overall
so much int_erested in accuracy as we are in gaining qualitative potential of mean force but not when viewed through the JDB
understanding. S salt energy function.
_The potential of mean force for A and B in units kT as Negative values of the JDB function mean that the direct
given by Debye-Huckel limiting law theory is attractive force between two ionic particles is enhanced by salt
_ at short distances. One might not have guessedviatould
wW(r) = —25Ko(kr) ®) have negative values in limiting law Debyelickel theory.
How can we interpret it? The positive end of the bipolar ion is
closer to the negative line charge than the negative end. The
positive end is therefore less screened from the negative line
ur)=2&Inr (10) charge_ than is the negative _eno!. The ._c,alt exerts a stronger
screening effect on the repulsive interaction between the more
After substitution of eq 10 into eq 1, we pass to the limit of distant negative end and the negative line charge than it does
vanishing cutoffa without encountering a singularity, and find  on the closer attraction of the positive end. The free energy of
screening is therefore net negative (diminishing the repulsive
W (1) = 25[—In 2 + y + Ky(kr) + In(xr)] (12) component), at least at shorter distances, where the overall
interaction is large. A rough numerical analysis (not shown)
wherey is the Euler constany, = 0.5772.... Figure 4 illustrates  does, in fact, indicate a strong correlation of the location of the
the present case. Once again, we have ordinary screeningminimum with the Debye screening lengti, ~ 1.1% 1.
behavior. The interpretation of the previous paragraph cannot be the
In the final example of this section, the negative line charge whole story, since the same logic would apply to the salt effect
B interacts with bipolar ion (amino acid) A possessing positive on the radial approach of a bipolar ion to a point charge. But
and negative ends separated by rigid spatifie bipolarion  Figure 3 shows only positive values of the corresponding
approaches the line Charge in radial orientation with its positive function Wsg and no minimum. We are gratefu] to a reviewer
end head-on. The distance between the positive end of A andfor pointing out that nothing as complicated as a line charge is
the line charge is equal tg and the distance of the negative needed to illustrate negative valuesaf. Although theradial
end from the line charge is therefore equal te |. The Debye- approach of a bipolar ion to a point charge generates only
Huckel JDB salt effect with cutof taken to zero is derived as  positive values at all distances, the approach of a bipolar ion to
an offsetpoint charge produces a JDB function that looks like
Weor) = 25{—In 2+ y + Ky(kr) + Ko(il) = Kolx(r + 1] + the one in Figure 5 (for example, a bipolar ion with positive
In(kr) — In[(r + D/} (12) end head-on approaches the origin along sthexis, while a

whereKg is the BesseK function (modified Bessel function of
the second kind) of order zero, and the direct potential is
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negative point charge is fixed, not at the origin, but at some Intermediate region
nonzero point on thg-axis). Subtle distance dependencies are __

involved. Note that although the line charge is not present in £ W(r) = —2EKq(kr) + 2(& = 1) In(cr) In(eb) — In(xr) 14
this example, the approaching ion is bipolar, with its distant (14)
negative end repelling the targeted negative charge. Far region

A line charge is important to our considerations, because it
will serve as our model for DNA. DebyeHuckel theory
provides an accurate description of electrostatic interactions
involving line charges of sufficiently low charge density. We  In the first two of these formulag is the spacing of the linear
have learned, therefore, that small ion enhancement of the directarray of charges modeling the polyion. Note that in the far
attraction at short distances between a line charge of low chargeregion, Z~w(r) is given by a DebyeHiickel formula even
density and a bipolar ion approaching with counterionic end though& > 1. This surprising result (one might have thought
head-first occurs, but (1) is not associated with counterion that a counterion at a far distanceould see only the net charge
release from a condensed layer, since a condensed layer obn the polyion, intrinsic charge minus charge of condensed layer,
counterions is absent from limiting law Debyeliickel theory, &net = 1) stems from cancellation of two distinct nonlinear
and (2) is associated with the repulsion between the line chargeeffects3

and the trailing co-ionic end of the bipolar ion, since thg Along with these formulas for(r), the number of condensed
enhancement effect does not occur when a pure counterioncqynterions can also be calculated as a function of position
approaches the line charge (Figure 4). of theZ-valent ion. IfP is the number of charges on the polyion
2.3. Counterion ReleaseThe plots ofwso in Figure 5 are  andg the number of condensed counterions per polyion charge,
similar in appearance to the simulated data of Jayaram'et al. then P9 is the number of condensed counterions. When the
for the A repressoroperator interaction (compare with Figure  z.yalent counterion is at infinityP® = P(1— £-1), a value that
1). The DNA operator site, however, has a high charge density, js maintained as th&-valent counterion approaches to a far
about 4 times the threshold value for emergence of a condensedjistancer. When theZ-valent counterion penetrates inside the

layer of counterions. Unmodified Debyéliickel theory can Debye-Hiickel cloud, i.e., into the intermediate regioR¢
be characterized not merely as inaccurate at such high chargeyecreases:

densities but qualitatively inapplicable, since it does not provide
the condensed counterions that dominate so many aspects of
polyelectrolye behavior. In particular, counterions are released
from the condensed layer surrounding DNA when basic _ . ) )
(positively charged) protein residues penetrate the layer. To This equatlon'tells us that when tAevalent ion has encroached
determine the effect of the presence of these ions on the freeUPON the farintermediate interface = «*, the number of
energy of attraction, we need a potential of mean foxe condensed counterions B(1 — &7). As the Z-valent ion

that is applicable at high charge densities. In this section we Penetrates up to the neaintermediate interface = (1/e)«*,

study the attraction of a point counterion to a line charge (more the number of condensed counterions progressively decreases
precisely, a linear array of discrete charged points) by meansto the valueP(1 — &%) — Z, that is, ultimatelyZ univalent

of a potential appropriate to charge densities above the thresholdgcounterions are released from the condensed layer. The number
condensation value. of released counterions does not increase further aztladent

An ion—polyion potential of mean force, the work required ion penetrates i.nto the near region up to thg position of the
to bring a line charge and a poiditvalent ion of opposite sign polyion. The main point here is that the potential of mean force

from infinity to r, has been derived previously in the framework W(r) contains the effect of released counterions.

Z7W(r) = —2EK (k) (15)

PO(r) = P(L — &% + ZIn(kr) (16)

of counterion condensation thechSeparate expressions for An unusual feature af(r) merits graphical illustration. Figure
w(r) apply to three disjoint ranges of distance3he nearrange 6 shows plots oZ~w(r), which is independent oz, for two
extends out from the line charge to distance (1/e)x 1, where salt concentrations. The three regions are clearly visible (because

e is the base of natural logarithms. An intermediate range runsthe approximate joining conditions could not produce a smooth
fromr = (1/e) 1 tor = «~L. Both the near and intermediate  curve). A free energy barrier impedes progress ofzhalent
ranges are therefore inside a Debye length. Counterions in theion toward the polyion. If thez-valent ion is a singled-out
near region correspond to the condensed lay8pace is univalent counterion, the barrier generates two distinct peaks
completed by a far region, outside the Debye length, reachingin the counterion radial distribution function, an inner one
to infinity from r = «~1. The theoretical potential is continuous corresponding to the condensed layer, and an outer one
across the neatintermediate and intermediatéar interfaces. corresponding to the DebygHiickel cloud? Both the attraction
The joining conditions are treated approximately, however, and in the far region and the repulsion in the intermediate region
the pOtentiaI is not smooth across the interfaces. The fOIIOWing are Stronger for the lower concentration. There is little depen_
formulas are for the pair potential between a line charge and agence on salt in the near region (condensed layer).

Z-valent oppositely charged ion brought from infinity tdn
background %1 salt like NaCl. If the line charge is negative,
the counterions are Naions. The threshold for condensation
is thereforeZ = 1, and the formulas are applicable for> 1.
The Z-valent ion can be (but is not necessarily) a singled-out
Na'.

Corresponding results for the JDB salt effect function are
readily obtained. The direct potentil) (divided byZ) is given
by eq 10. For the present case, eq 1 for the JDB function
becomes

Wed(r) = [Whea(@) — u(@] — [w(r) —u()]  (17)

Near region
wherewnea(@) is the potential evaluated at the cutoff distance

Zw(r) = —28K(kr) = 2(5 — 1) In(kb) + 1 (13) a, reasonably taken as less than (/@) and hence in the near
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Figure 6. Potential of mean force/(r) in units of ZRTfor a Z-valent
counterion approaching a line charge in counterion condensation theory.
In these units, the graph is the same for any valug.ddolid curve,

0.1 M salt; dotted curve, 0.2 M salt. The charge density of the §ne,

= 4.2, is that of DNA and corresponds to charge spating 1.7 A.
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Figure 7. JDB function in units ofZRT for a Z-valent counterion

approaching a line charge (= 4.2, b = 1.7 A) in counterion
condensation theory. Solid curve, 0.1 M salt; dotted curve, 0.2 M salt.

region. In any event, when we go to the linét— 0, the
following expressions emerge:

Near region

Z W 1) = 2E[Ko(kr) + In(kr) —IN2+ 9] (18)

Intermediate region

Z W) = 2E[Ko(kr) + In(kr) — In 2+ 3] —
2(& — 1) In(b)[In(xr) + 1] + In(kr) + 1 (19)

Far region

Z W r) = 2E[Ko(kr) + In(kr) — In 2+ 3] —
2(& — 1) In(kb) + 1 (20)

Figure 7 gives a plot oZ wg(r) in accordance with eqs
18—20. The graph is the same for any valueZofPerhaps its
single most striking aspect is that it looks very much like the
one in Figure 4, showing ordinary Debyeluckel screening
for the same system (interaction between a line charge and
point charge of opposite sign). The effect of counterion release
is indubitably incorporated into our formulas and certainly gives
a negative contribution tevs(r). It must be offset by other
effects that weaken the inherent attraction of the-ipalyion
pair. It is not easy to pick these equations apart into their
constituent physical contributions. One way to rationalize our
result begins by noting that counterion release occurs progres
sively as theZ-valent point ion approaches the oppositely
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charged line across the intermediate region. The intermediate
region is characterized by partial screening [this statement is a
precise oné,but it is also intuitively clear from the fact that
the values ofr in this region lie between (1/e)! and« 1.

The unfavorable effect of partial screening on the attraction may
dominate the favorable free energy of counterion release. The
process of counterion release is finished whenzZivalent ion
arrives at the neatintermediate interface. No further release
of counterions occurs when the ion penetrates and crosses the
near region. Correspondingly, there is essentially no screening
within the near region (again, a precise statef)eandws(r)

in Figure 7 can be seen to be close to zero in this region.

There is one difference between Figures 7 and 4, and it
concerns the salt dependence. For ordinary Delbigckel
screening as illustrated in Figure 4, raising the salt concentration
increases the amount of screening at all distamcbstween
counterion and line charge. In contrast, Figure 7 for the full
counterion condensation theory of the countefipnlyion
interaction shows a crossover near the boundary between
intermediate and far regions. There exists a region in Figure 7
where higher salt concentration weakens the direct attractive
interaction between counterion and polyion less than lower salt.
The curves in Figure 7 cross back to the “normal” order at a
value ofr well into the far region.

The counterion condensation theory is actually more com-
plicated than is sometimes supposed. In particular, the presence
of aZ-valent ion atr perturbs the internal partition function of
the counterions condensed on the line chdrdais effect is
present in the theory, it exists in addition to the effects of
counterion release and screening, and it is important. We find
it hard to tell how it affects the qualitative features of Figure 7.
We may firmly conclude, however, that the negative values of
the JDB free energy found by Jayaram etial their simulation
of the A repressoroperator system cannot be explained solely
as a manifestation of the favorable free energy generated by
release of condensed N#&ns when a cationic protein residue
penetrates the condensed layer.

2.4. Modeling a Proteinr—DNA Interaction. In this section
we look at two models of a proteirDNA interaction in the
framework of counterion condensation theory. The DNA is
represented as a negatively charged line (i.e., a linear array of
point negative charges with spaciby In the first model, the
“protein” is the bipolar ion whose interaction with a line charge
was analyzed above with limiting law Debyeliickel theory
(Figure 5). The second model for the protein is a large collection
of positive and negative charges, given the coordinates of the
basic and acidic charged groups/ofepressor protein.

The interaction among a collection of charges is not generally
pairwise additive in counterion condensation theory. For
example, the free energy of assembly of three line charges in
parallel array does not equal the sum of the free energies of
assembling the three pairs of line charges, each pair of charges
in isolation from the third charg&.In the present case, the
question arises of whether we can equate the interaction free
energy of the line charge and the several charged sites on the
protein to the sum of the free energies of interaction of the line

acharge with each of the charged protein sites considered in

isolation from the others. It turns out that we cannot. The overall
intermolecular potential of a negative line charge and a
counterior-co-ion pair is not equal ter;(r4) + w-(r-), where
the first term is the potential for the isolated counteriom.at
and the second is the potential for the isolated co-ion_at
What is true, however, is fortunately even simpler. The potential

(9) Ray, J.; Manning, G. SVlacromolecule®00Q 33, 2901-2908.
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Figure 8. Potential of mean forcev(r) (counterion condensation Figure 9. JDB function (counterion condensation theory) in units of
theory) in units ofRT for a bipolar ion of lendt 4 A approaching a RT for a bipolar ion of lendt 4 A approaching a line chargé € 4.2,
line charge § = 4.2,b = 1.7 A), the oppositely charged end of the b =1.7 A), the oppositely charged end of the bipolar ion coming head-
bipolar ion coming head-first at distancefrom the line. The ionic first at distance from the line. The ionic strength is 0.1 M.
strength is 0.1 M.

) . with Figure 6 for the potential of mean force of a counterion
for this case equale(r) — w.(r-). In other words, there is 54 the |ine charge. The qualitative features of the potentials

additivity if we set the potential for the co-ion equal to the e similar for the particular numerical values of the parameters
potential for the counterion with changed sign, just as we would chosen, although differences in detail are evident.

in the context of Coulomb’s law or DebydHiickel theory. The In the calculation of the JDB salt free energyo, we have

argument is given in the Appendix. to realize that the reference state is at O for the positive end

2.4.1. Bipolar lon. In this paragraph we continue our ¢ he hinolar ion but at = | for the negative end. Thus, in the
consideration of the counterieito-ion pair, or bipolar ion. A near-intermediate region we get

point positive charge attached to a point negative charge with
rigid spacingl approaches a negative line charge in radial
orientation with the positive end head-on. The potentials are
expressed as functions of the distamceetween the positive
end and the line charge. The negative end is always at distancevherew, (a = n, i, f) is the salt effect function for a point

r + | from the line charge. Several regions of a “direct product” counterion (isolated positive end of the bipolar ion) in the near,
space arise. For example, the positive end of the bipolar ion intermediate, or far region, as given by egs 18, 19, and 20,
can be in the near region, while the negative end is in the respectively, withZ = 1. The negative end of the bipolar ion is
intermediate region. A complete list of the six possibilities is accounted for in the signs. The middle term of the right-hand
near-near, nearintermediate, neatfar, intermediate-inter- side is always the same. For example, to obvdj@ replace n
mediate, intermediatefar, and far-far. Of these six, only two by i in the first term, leave the middle term unchanged, and
are always present regardless of the values of the bipolar ionreplace i in the last term by f.

spacing and the Debye screening length: the intermediate We illustrate the salt function in Figure 9. The graph is
far and far-far regions. The neamear region is present only  dominated by the minimum at negative values of the function.
if | < (1/e)c*. The near-intermediate region is present only if ~ The decreasing portion is in the nedntermediate region. Now

Wir) = W) + wWil) — wir + 1) (21)

| < «~L The near-far region is present only if > (1 — Figure 7 shows that the contribution to the salt function from
e 1) (the width of the intermediate region). Finally, the the positive end in the near region is almost zero. The positive
intermediate-intermediate region is present onlylif< «~1(1 end is represented by the first term of the right-hand side in eq

— e 1). Thus, a very short bipolar ion passes through five of 21. The negative values in Figure 9 are generated by the middle
the six regions as it moves away from the line charge to infinity and last terms. Both of these terms appear only because of the
(all but the nearfar region), while a very long bipolar ion  presence of the negatively charged end of the bipolar ion.
encounters only three (the nedar, intermediatefar, and far- Therefore, the negative values and the minimum in Figure 9
far regions). are caused by the presence of the negative end (same sign charge
The pseudoadditivity discussed above makes it easy to writeas the polyion) and are not correlated with the release of
down the potential of mean force (work required to bring the counterions from the condensed layer surrounding the polyion.
bipolar ion from infinity to r) in each region. With the 2.4.2.4 Repressor Protein.A protein typically contains many
abbreviations n= near, i= intermediate, and £ far, let for ionized groups, not just two. In the framework of our model,
examplewyi(r) be the potential when the positive end is in the the problem is to calculate the potential of mean force between
near region at and the negative end is in the intermediate region a line charge (the DNA) and a collection of unit positive and
atr + I. Then,wpi(r) = wia(r) — wi(r + 1), wherewn(r) is given negative point charges all with fixed positions relative to each
by the right-hand side of eq 13, amg(r + ) is the expression  other (the protein). The problem is simplified by the pseudoad-
on the right-hand side of eq 14 but evaluated &tl instead of ditivity discussed above and in the Appendix, but it is still
r. complicated, because several protein charges may be in the near
Figure 8 illustrates the potential wher 4 A and«—1 = 9.6 region, several in the intermediate region, and several in the
A (0.1 M NaCl). The boundary between near and intermediate far region; and the number of charges in each region, and the
regions is at (1/&y! = 3.5 A, so asr moves from a cutoff, mix of charge types, changes as the distance between protein
say, of 1 A3 the potentialw(r) passes successively through the and DNA changes. In the “docked” position, i.e., in the protein
brancheswyi(r) (1 = r =< 3.5),w;(r) (3.5=r = 5.6),wi(r) (5.6 DNA complex, we ascertain from crystallographic data the
<r < 9.6), andwi(r) (9.6 < r < o). Figure 8 may be compared distanced; between each ionized protein residand its nearest
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line charge representing the DNA. The distance of any other
protein chargé is then set ta + d; — do. Then when we say Figure 12. JDB function in kcal mot* at 298 K for thel repressor
that the protein is at a distancdrom the DNA, we mean that ~ PNA interaction in counterion condensation theory. Solid curve, 0.1
the distance has been added to the docking distance of each M Salt: dotted curve, 0.2 M salt.

protein charge. We have written an algorithm that generalizes . 2l h lculated It effect f .
the case of the protein as bipolar ion to the protein as a collection, ~'9ure 12 illustrates the calculated JDB salt effect function

of an arbitrary number of positive and negative charges as fo_r t_he repressefDNA interaction. Ou_r model reproduces the
described. It follows from the analysis given in the Appendix minimum found by .Jayaram EI_dI'Wh'Ch we a“”b“t? to the
that the use of pseudoadditivity in the algorithm is justified if nfluence of the co-ionic (negatively charged) protein residues
each negative charge either (1) can be paired with a positive"’? the range of |n_termed|ate distances from the DNA binding
charge closer to the DNA or (2) is so remote from the DNA site. We agree with Jayaram et al. on the enhancement of the

that it finds itself in the far region even in the closest possible minimum at lower ionic strengt.hs, and, like these authors, we
“docked” position of the protein. also can see a crossover to an inverted salt dependence at larger

In Figure 10, we show all the ionized protein residues distances. This long-distance feature is delicate, however; we

. . - . - do not see a crossover for all concentration pairs (not shown).
(positively charged lysines and arginines, negative glutamic and Recall that the long-distance crossover is observed also in Figure
aspartic acids) in the repressdNA complex as obtained from 7 for the salt effect on the counterion potential
the Nucleic Acid Database (http://ndbserver.rutgers.edu, code ’

PDRO010). At the ionic strengths used in our calculations, 0.1
M NaCl and 0.2 M, the Debye screening lengths are 9.6 and
6.8 A, respectively. The inside boundary of the far region at a  For the process of bringing two ionized molecules from an
specified ionic strength is given by the corresponding value of initial distancer to their final complexed position, we have
the screening length. It can be verified from Figure 10 that the defined a salt effect functionsy(r) to represent the contribution
conditions for applicability of our additivity-based algorithm to the free energy change from interactions of the two reacting
are met. It should also be noted that the interface ofthe molecules with all other small ions also present in the solution.
repressoroperator complex contains only positively charged The function is defined to represent the same free energy as
protein residues. However, negatively charged groups are presenthat computed by Jayaram ettah their Monte Carlo simulation

in the intermediate region and even outnumber the positive of A repressor and DNA operator. We have examined cases

Discussion

charges there. ranging from a simple ion-pairing reaction to theepressor
Figure 11 shows the ionic potential of mean force as a operator complexation.
function of distance betweent repressor and its DNA operator If the reacting ions are of opposite sign, the prior expectation

site. Comparison with Figures 6 and 8 reveals the similarity of is for wsi(r) to be everywhere positive. The meaning of a positive
the protein potential to that of a counterion or bipolar ion. The value of wsy(r) for a given distance is that the other small
barrier to binding is prominent and creates a metastable positionions in the system act to weaken the direct attraction of the
located well away from the absolute minimum at the binding reacting ions. We expect this behavior from simple Debye
site. Huckel theory, which describes the effective weakening of an
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ionic charge in solution by a surrounding screening atmosphereion is a singled-out univalent counterion, the barrier causes
of net opposite charge. We indeed find the expected behaviorseparation of the counterions into two spatially separated
for some of the systems we have looked at, such as an ion pairpopulations, the condensed counterions on the near side of the
(Figure 2), the complexation of an ion with the oppositely barrier and the DebyeHuckel atmospheric counterions on the
charged end of an amino acid (Figure 3), and the complexation far side For the approach of a bipolar ion to a polyion, the
of an ion with an oppositely charged polyion (Figures 4 and oppositely charged end coming first, counterion condensation
7). In connection with Figure 7, which illustrates the application theory as exhibited in Figure 8 again provides a barrier to
of counterion condensation theory to the reaction @f\alent binding of the oppositely charged end.
ion with an oppositely charged polyion, we noted that The barrier to binding persists for the repressor DNA
univalent counterions are released from the polyion when its complex (Figure 11). Because the protein is attracted to its DNA
condensed layer is penetrated by #realent ion. The release  destination at far distances, the barrier creates a deep (nearly
of counterions contributes a favorable free energy to the binding 10 kcal) metastable position at its far side, well removed (7
of theZ-valent ion. Nonetheless, the overall effect of small ions 10 A) from the absolute minimum at the binding site. Possible
in the solution, including the condensed counterions, is to transient storage of the protein at this remote local minimum
weaken the attraction between thealent ion and the polyion  should be kept in mind in any detailed consideration of the
at all distances. binding of 1 repressor to its operator site, or of its release from

A dramatically unexpected effect is obtained, however, when the operator. Zacharias et al. have made a similar observtion.
a polyion binds the oppositely charged end of a bipolar amino TNhe potential that we have calculated contains, of course, only
acid, as analyzed either by Debysliickel or counterion  the ionic proteir-DNA interactions. On the other hand, the
condensation theory (Figures 5 and 9, respectively). For this additional short-range interactions contributing to the overall
case, the functiomsq(r) descends from its reference value zero Potential of mean force may be too weak at distances removed
at the binding position into a range of negative values before from the binding site to distort significantly either the ionic
reaching a minimum and then increasing into the familiar regime Parrier to binding or the remote minimum. .
of positive values. A negative value okr) for some given “Although the minimum in the JDB function observed in
distancer means that the direct attractive force at that distance Fi9ure 12, and the crossover at far distances, are both in
between the polyion and the bipolar ion (which is oriented with agreement with the simulation of Jayaram et alie disagree
its oppositely charged end closest to the polyion) is made N the _magmtude of the sglt effect at far separations. A@ far
stronger by the presence of the other small ions in the solution. S€Parations, the JDB function returns the effect of small ions
We have identified the reason for this counterintuitive salt effect On the free energy of binding starting from the separate species.
as reflecting the interaction of the polyion with the co-ionic NOting the high positive free energy values at large Figure
end of the bipolar ion (the COOend of an amino acid binding _12, we can say that our calculated effect of salt _(aII_smaII ions,
to DNA, for example). The end of the bipolar ion bearing a including the counterions of the DNA_ and proteln)_|s strongly
charge of the same sign as the polyion is directly repelled by unfavorable toward binding frpm the isolated species by about
the polyion. The other small ions present in the system act to 40~45 kcal, whereas the simulated data of Jayaram et al.
weaken the repulsion, thereby effectively strengthening the pro_duqe only a few kilocalories of unf_avorable free energy (see
overall attraction between the polyion and the bipolar ion.  their Figure 3). On the other hand, Misra et shave observed

. . . . . from numerical PoissenBoltzmann calculations an unfavorable
The action of small ions in augmenting a direct Coulomb

attractive force. an effect exactly the ooposite of tati free energy of about 18 kcal due to the presence of small ions
V N xactly the opposi EXpectation ¢, the complexation of repressor and DNA operator; and from
from Debye-Hickel screening considerations, persists in the

I . ) a completely different protocol, Jayaram et al. give an estimate
case of the binding of thé repressor protein to its operator P y P y g

. . - . of 132 kcal for the effect of small ions on complexation of this
site on DNA (F'gufe 12). Although in the prote#DNA bound ... protein (B. Jayaram, private communication). Thus, we currently
complex the protein charges closest to the DNA are all positive have estimates of the effect of small ions Brrepressor
_(Flgure .10)’ t_here are several negative protein charggs .atoperator binding (from the protein and DNA species either
mterr_nedlate distances from the DNA phqspha_tes. The CO-IONIC i) ated or at large distances), all of which represent unfavorable
protein charges (glutamic and aspartic acid re3|d_ues_) are Q'reCtlyfree energy but range from a few kilocalories to over 100 kcal.
repelled by the phosphates. The direct repulsion is mitigated Our estimate of 4645 keal is somewhere in the middle.
by the presence of Naand CI ions, which therefore favors

the movement of the protein toward the DNA from relatively  Acknowledgment. We are grateful to B. Jayaram for

close separations. This fine-tuning of the proteDNA interac- extended correspondence and to the U.S. Public Health Service

tion by negatively charged protein groups not in the binding for partial support of our research through Grant GM36284.
site but not far from it points to a possible utility of these

residues beyond maintenance of aqueous solubility. Appendix

We have also provided some results for the ordinary potential ¢ 5 polyelectrolyte solution is treated within Debyiuckel
of mean forcen(r). This function gives the overall work required  heory, the counterion and co-ion potentials are everywhere
to bring two charged molecules from infinity to distance  gssentially the same. Both equal the product of their respective
including the effect of interaction with all other ions in the charges with the electrostatic potential set up by the polyion.
system. Figure 5 contains an illustration wfr) as given by They differ, therefore, only in their sign. In" counterion
Debye-Hickel theory for the approach of a bipolar ion toward  condensation theory, however, the counterion and co-ion
a polyion, the oppositely charged end coming first. The curve potentials differ in a more fundamental way, at least in the near

has the appearance of an ordinary screened Coulomb attractionang intermediate regiorsA co-ion positioned inside the near
The application of counterion condensation theory gives a

i i i i ; (10) Zacharias, M.; Luty, B. A.; Davis, M. E.; McCammon, J.Biophys.
different result, as seen in Figure 6 for the interaction of a 3.1995 63, 1280-1285.

Z-valent ion and an oppositely charged polyion. A free energy ™ (11) visra, V. K.; Hecht, J. L.; Sharp, K. A.; Friedman, R. A.; Honig,
barrier to binding is a prominent featurewfr). If the Z-valent B. J. Mol. Biol. 1994 238, 264—280.
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region behaves like one of the charged groups on the polyion. minimizing value ofé is familiar: P(1 — &) is the total
The charge on the co-ion is renormalized by condensed number of univalent counterions condensed on an isolated
counterions to the same extent as any of the charged groups ompolyion with P charged groups. Intrusion of both ends of the
the polyion. A co-ion in the intermediate region behaves like a overall neutral bipolar ion into the near region does not change
fractionally charged polyion group. The co-ion potential equals the net charge density in this region, so there is no net release
the negative of the counterion potential only in the Debye or gain of counterions on the polyion. Similarly, the negative
Huckel-like far region. This situation destroys additivity. If a end of the bipolar ion is unassociated with independent
bipolar ion (which may be thought of as a counteri@o-ion counterionsf' = 0, because the additional counterion required
pair) approaches a polyion, a strict additivity rule (overall tocondense into the near region in order to maintain the effective
potential equals isolated counterion potential plus isolated co- polyion charge density equal to the critical condensation value
ion potential) is applicable only if the co-ion end of the bipolar is automatically supplied by the positive end.
ion is located in the far region. Since the number of counterions condensed on the negative
Consider a bipolar ion located such that both of its ends are end of the bipolar ion is zero in the far region, and, as we have
inside the near region. If the polyion is negatively charged, then just seen, in the near region as well, we may assume with some
the negative end of the bipolar ion may cooperate withRhe assurance that none are condensed on the negative end in the
charged groups on the polyion in the formation of a condensed intermediate region. The physical reason would be that the
layer of counterions. On the other hand, attached as it is to thenegative end in the intermediate region would at most be
positive end, the negative end is certainly distinct from a charged required to condense some fraction of a counterion (in a time-
group on the polyion. Therefore, we use a renormalized chargeaverage sense), and this requirement is overfulfilled by the unit
—(1 — 6")q for the negative end of the bipolar ion, in contrast charge forced to accompany the negative end as part of the
to theP renormalized charges(1 — 6)qg on the polyion. Here, covalent structure of the bipolar ion. In fact, we have verified
0 and @' are the fractional numbers of counterions condensed that the intermediate region equations corresponding to eqs 22
on each polyion charge and the negative end of the bipolar ion,and 23 have no solution in the physically meaningful range 0
respectively. For the polyionfP makes sense as the total < ' < 1; free energy minimization at the boundary vattie=
number of counterions shared by all the polyion charges in a 0 is then the only plausible alternative. We generalize this rule
condensed layer. An interpretation for the negative end of the to the collection of negative charged residues on a DNA-binding
bipolar ion would be that it is associated with a condensed protein with net zero or positive charge: none of the negative
counterion for the fraction of timé'. protein charges are ion-paired with counterions. An additivity
The free energy is set up along lines parallel to the rule for the entire collection of protein charges, positive and
development in ref 3. The number of counterions transferred negative, then follows if we set the potential for each negative
from bulk concentratiort to the condensed layer around the charge equal to the potential for a positive charge but for a sign
polyion or to the negative end of the bipolar ionR§ + 6'. change.
The interaction free energy between the negative emtaatd The requiremen®’ = 0 (no ion-pairing of a negative protein
the polyion equals &1 — 6)(1 — 0')Ko(kr'). The total free charge with counterions) does not mean ®@tthe number of
energy is minimized by setting its derivatives with respedito  counterions condensed on the DNA, is unaffected by the protein
and@' separately equal to zero. In the two resulting equations, charges. For example, each positive protein charge located in
the Inc terms are isolated and their coefficients are set equal to the near region of DNA results in the release of one univalent

zero. The two equations resulting from this operation are counterion from the condensed layer. Similarly, each negative
protein charge located in the near region of DNA would result
§1-06)—-1=0 (22) in the addition of one counterion to the condensed layer (but

this additional counterion is not ion-paired to the negative
protein charge). If there are more positive protein charges in
E1- 0 the near region than negative protein charges, there is a net
2= 7= (23) release of counterions from the condensed layer. Protein charges
P positioned in the intermediate region, both positive and negative,
also influence the value d?6.

and
_py_q_&
E1-60)—-1 P+

The solution of eq 22 i = 1 — (1/£), and when this value
of 0 is substituted into eq 23, it becomes clear #iat 0. The JA9942437



